Mucosal vaccination in a murine gnotobiotic model of Giardia lamblia infection

Author:

Ihara Sozaburo12,Nguyen Brian V.1,Miyamoto Yukiko1,Eckmann Lars1ORCID

Affiliation:

1. Department of Medicine, University of California San Diego, La Jolla, California, USA

2. Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

Abstract

ABSTRACT Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia , but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

MEXT | Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3