Purine and glycine metabolism by purinolytic clostridia

Author:

Dürre P,Andreesen J R

Abstract

Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference46 articles.

1. Barker H. A. 1956. Bacterial fermentations p. 70-86. In D. E. Green (ed.) Currents in biochemical research. Interscience Publishers Inc. New York.

2. The fermentative decomposition of purines by Clostridium acidi-urici and Clostridium cylindrosporum;Barker H. A.;J. Biol. Chem.,1941

3. Carbon dioxide utilization in the formation of glycine and acetic acid;Barker H. A.;J. Biol. Chem.,1947

4. Mechanistic and stereochemical studies on the glycine reductase of Clostridium sticklandii;Barnard G. F.;Eur. J. Biochem.,1979

5. Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsaure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang;Beisenherz G.;Z. Naturforsch. Teil B,1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3