Abstract
Eighteen independent hybridomas producing monoclonal antibodies to Newcastle disease virus have been prepared by fusion of SP2 cells with spleen lymphocytes from a BALB/c mouse immunized with intact UV-inactivated Newcastle disease virus strain Australia-Victoria. They have been divided into three groups on the basis of radioimmunoprecipitation, infected cell surface and cytoplasmic fluorescence, and isotype. The anti-HN group is made up of nine antibodies which give surface fluorescence on infected cells and immunoprecipitate the HN glycoprotein. These antibodies bind to HN in nitrocellulose transfers of sodium dodecyl sulfate gels, but only if it has been neither reduced nor boiled. To varying degrees, all of these HN antibodies neutralize infectivity. These results suggest that they recognize exposed determinants of a conformational nature on the native HN molecule. They have been used in competition antibody-binding radioimmunoassays and additive neutralization assays, and on the basis of these studies the epitopes they recognize have been subdivided into four domains, two of which are overlapping, on the HN glycoprotein. The relatively weaker neutralizing activity observed with some of these antibodies cannot be explained by lower avidities for their epitopes because there is not an inverse correlation between estimated binding constant and neutralizing activity. The four antibodies in the second group all give a predominantly cytoplasmic fluorescence pattern, immunoprecipitate the nucleocapsid protein, and bind to nucleocapsid protein in nitrocellulose transfers of reduced and nonreduced sodium dodecyl sulfate-polyacrylamide gels. All five of the antibodies in the third group are of the immunoglobulin M class, unlike the others which are all immunoglobulin G antibodies. Members of this group show variable fluorescence patterns, but none is able to immunoprecipitate or bind to a specific viral antigen transferred to nitrocellulose paper from sodium dodecyl sulfate-polyacrylamide gels.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology