Isolation and Partial Characterization of Escherichia coli Mutants with Low Levels of Transfer Ribonucleic Acid Nucleotidyltransferase

Author:

Deutscher Murray P.1,Hilderman Richard H.1

Affiliation:

1. Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032

Abstract

To determine the function of the enzyme transfer ribonucleic acid (tRNA) nucleotidyltransferase in vivo, five mutants of Escherichia coli containing low levels of this enzyme were isolated. Since no selection procedure for such mutants existed, these strains were isolated by assay of large numbers of colonies from a heavily mutagenized stock. A procedure employing cells made permeable to tRNA and ATP was used to screen the large number of colonies required for the isolation. All the mutants contained less than 20% of the normal level of the AMP-incorporating activity of tRNA nucleotidyltransferase in extracts prepared by several methods, and the best mutant contained only about 2% of this activity. Three of the mutants also had equally low levels of the cytidine 5′-monophosphate-incorporating activity of the enzyme. Despite these low activities, the mutant strains displayed relatively normal growth characteristics at all temperatures examined. The enzyme in the mutant strains was not temperature sensitive, nor were any other abnormal biochemical properties detected. tRNA isolated from the mutant strains was missing significant amounts of its 3′ terminal adenosine 5′-monophosphate residue, amounting to 10 to 15% in the best mutant. However, only small amounts of the terminal cytidine 5′-monophosphate residue were missing. The results indicate that tRNA nucleotidyltransferase is involved in some aspect of synthesis or repair of the 3′ terminus of tRNA, and that the enzyme is present in large excess over its requirements for this function.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3