A novel protein encoded by circVPS13D attenuates antiviral innate immunity by targeting MAVS in teleost fish

Author:

Wang Linchao1ORCID,Song Yanhong1,Yan Xiaolong1,Xu Tianjun12ORCID

Affiliation:

1. Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University , Shanghai, China

2. Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao, China

Abstract

ABSTRACT The signaling adaptor MAVS is a vital adaptor protein in retinoic acid-inducible gene I-like receptors (RLRs) signaling; thus, its expression and responses must be tightly regulated to avoid uncontrolled production of type I IFN by various mechanisms, including ubiquitination. The protein-coding ability of circRNAs has recently been a hot topic, but the roles of protein-coding circRNAs in antiviral innate immunity of teleost have rarely been reported. In this study, we identify that a novel circRNA derived from vacuolar protein sorting-associated protein 13D ( VPS13D ) gene, named circVPS13D, was a suppressor of RLR signaling pathways during poly(I:C) stimulation or Siniperca chuatsi rhabdovirus (SCRV) infection. Mechanistically, circVPS13D contains a 513-nucleotide (nt) open reading frame (ORF) and a sequence that is −174 nt as an internal ribosome entry site (IRES), which is required for translation initiation in 5’-cap-independent coding RNAs. SCRV infection promoted the expression of circVPS13D and circVPS13D encodes a novel peptide, termed VPS13D-170 amino acid (aa), which directly interacted with MAVS and inhibited IFN-I production. VPS13D-170aa targeted the K172 residue of MAVS through K48-linked polyubiquitination, leading to proteasomal degradation of MAVS. IMPORTANCE The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3