Regulation of human papillomavirus type 11 enhancer and E6 promoter by activating and repressing proteins from the E2 open reading frame: functional and biochemical studies

Author:

Chin M T1,Hirochika R1,Hirochika H1,Broker T R1,Chow L T1

Affiliation:

1. Biochemistry Department, School of Medicine & Dentistry, University of Rochester, New York 14642.

Abstract

E2-C, a protein consisting mainly of the carboxy-terminal 45% of the human papillomavirus type 11 (HPV-11) E2 protein, was expressed from the Rous sarcoma virus long terminal repeat in mammalian cells. It competitively repressed the stimulatory action of the full-length E2 protein on the HPV-11 enhancer located in the upstream regulatory region, as assayed by the expression of a reporter gene from the simian virus 40 (SV40) early promoter in transiently transfected monkey CV-1 cells. A mutation in the initiation codon for E2-C protein eliminated repression. In the human cervical carcinoma cell line C-33A, which apparently lacks endogenous HPV DNA, the HPV-11 enhancer-SV40 promoter and the HPV-11 enhancer in its normal association with the E6 promoter had high constitutive activity. In these cells, E2 proteins had little or no stimulatory effect on the transcriptional activity of the HPV-11 enhancer-SV40 promoter. In contrast, the HPV-11 enhancer-E6 promoter was stimulated by the HPV-11 E2 protein but repressed by the bovine papillomavirus type 1 E2 protein, an effect due either to a quantitative difference in E2 expression levels or to a qualitative difference in the trans-activating abilities of the two E2 proteins. In this cell line, the HPV-11 E2-C protein suppressed both the constitutive activity and the HPV-11 E2 trans activation. The E2-C protein was also produced from an expression vector in Escherichia coli. The E2-C protein present in crude E. coli lysates or purified by DNA affinity chromatography associated in vitro with a specific sequence, ACCN6GGT, in filter-binding assays. Moreover, the protein generated DNase I footprints spanning this motif identical to those of bacterially expressed full-length E2 proteins. This DNA sequence motif is necessary and sufficient for E2 binding in vitro and enhancer trans activation in vivo (H. Hirochika, R. Hirochika, T. R. Broker, and L. T. Chow, Genes Dev. 2:54-67, 1988). Mutations in this sequence that abolished interactions with E2 also precluded binding to the E2-C protein. These data strongly suggest that the full-length E2 protein consists of two functional domains: the amino-terminal half for trans activation and the carboxy-terminal half for DNA binding. The mechanism by which E2-C represses E2-dependent enhancer activity most likely involves competition with E2 for binding to a common transcriptional regulatory site.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference46 articles.

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3