Immunogenicity and efficacy of XBB.1.5 rS vaccine against the EG.5.1 variant of SARS-CoV-2 in Syrian hamsters

Author:

Soudani Nadia12,Bricker Traci L.1,Darling Tamarand1,Seehra Kuljeet1,Patel Nita3,Guebre-Xabier Mimi3,Smith Gale3,Davis-Gardner Meredith4,Suthar Mehul S.4,Ellebedy Ali H.2,Boon Adrianus C. M.125ORCID

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA

2. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA

3. Novavax Inc., Gaithersburg, Maryland, USA

4. Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia, USA

5. Department of Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

Abstract

ABSTRACT The continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates updating coronavirus disease 2019 (COVID-19) vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine with previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of S-specific IgG and IgA antibody-secreting cells and antigen-specific CD4 + T cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against the XBB.1.5, EG.5.1, and JN.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea, and nasal washes. The bivalent vaccine (Prototype rS + BA.5 rS) continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. By contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, based on these study results, the protein-based XBB.1.5 vaccine is immunogenic and increased the breadth of protection against the Omicron EG.5.1 variant in the Syrian hamster model. IMPORTANCE As SARS-CoV-2 continues to evolve, there is a need to assess the immunogenicity and efficacy of updated vaccines against newly emerging variants in pre-clinical models such as mice and hamsters. Here, we compared the immunogenicity and efficacy between the updated XBB.1.5, the original Prototype Wuhan-1, and the bivalent Prototype + BA.5 vaccine against a challenge with the EG.5.1 Omicron variant of SARS-CoV-2 in hamsters. The XBB.1.5 and bivalent vaccine, but not the Prototype, induced serum-neutralizing antibodies against EG.5.1, albeit the titers were higher in the XBB.1.5 immunized hamsters. The presence of neutralizing antibodies was associated with complete protection against EG.5.1 infection in the lower airways and reduced virus titers in the upper airways. Compared with the bivalent vaccine, immunization with XBB.1.5 improved viral control in the nasal turbinates. Together, our data show that the updated vaccine is immunogenic and that it offers better protection against recent variants of SARS-CoV-2.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3