Host Sequences Flanking the Human T-Cell Leukemia Virus Type 1 Provirus In Vivo

Author:

Leclercq India1,Mortreux Franck1,Cavrois Marielle1,Leroy Arnaud2,Gessain Antoine3,Wain-Hobson Simon4,Wattel Eric56

Affiliation:

1. Unité 524 INSERM, Institut de Recherche sur le Cancer de Lille,1 and

2. Unitéd'Oncogenèse Virale, Centre Oscar Lambret,2 Lille,

3. Unitéd'Epidémiologie des Virus Oncogènes,3 and

4. Unité de Rétrovirologie Moléculaire,4Institut Pasteur, Paris, and

5. Unité d'Oncogenèse Virale, UMR5537 CNRS-Université Claude Bernard, Centre Léon Bérard, Lyon,5 and

6. Service des Maladies du Sang, CHU 59037 Lille,6 France

Abstract

ABSTRACT Human pathogenic retroviruses do not have common loci of integration. However, many factors, such as chromatin structure, transcriptional activity, DNA-protein interaction, CpG methylation, and nucleotide composition of the target sequence, may influence integration site selection. These features have been investigated by in vitro integration reactions or by infection of cell lines with recombinant retroviruses. Less is known about target choice for integration in vivo. The present study was conducted in order to assess the characteristics of cellular sequences targeted for human T-cell leukemia virus type 1 (HTLV-1) integration in vivo. Sequencing integration sites from ≥200 proviruses (19 kb of sequence) isolated from 29 infected individuals revealed that HTLV-1 integration is not random at the level of the nucleotide sequence. The virus was found to integrate in A/T-rich regions with a weak consensus sequence at positions within and without of the hexameric repeat generated during integration. These features were not associated with a preference for integration near active regions or repeat elements of the host chromosomes. Most or all of the regions of the genome appear to be accessible to HTLV-1 integration. As with integration in vitro, integration specificity in vivo seems to be determined by local features rather than by the accessibility of specific regions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3