The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence

Author:

Rudner D Z1,LeDeaux J R1,Ireton K1,Grossman A D1

Affiliation:

1. Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

Spore formation in Bacillus subtilis is a dramatic response to environmental signals that is controlled in part by a two-component regulatory system composed of a histidine protein kinase (SpoIIJ) and a transcriptional regulator (Spo0A). The spo0K locus plays an important but undefined role in the initiation of sporulation and in the development of genetic competence. spoIIJ spo0K double mutants had a more severe defect in sporulation than either single mutant. Overproduction of the spoIIJ gene product resulted in the suppression of the sporulation defect, but not the competence defect, caused by mutations in the spo0K locus. On the basis of the phenotype of the spoIIJ spo0K double mutant and the effect of overproduction of the spoIIJ gene product, a transposon insertion in the spo0K locus was isolated. The spo0K locus was cloned and sequenced. spo0K proved to be an operon of five genes that is homologous to the oligopeptide permease (opp) operon of Salmonella typhimurium and related to a large family of membrane transport systems. The requirement for the transport system encoded by spo0K in the development of competence was somewhat different than its requirement in the system encoded by spo0K in the development of competence was somewhat different than its requirement in the initiation of sporulation. Disruption of the last open reading frame in the spo0K operon caused a defect in competence but had little or no effect on sporulation. We hypothesize that the transport system encoded by spo0K may have a role in sensing extracellular peptide factors that we have shown are required for efficient sporulation and perhaps in sensing similar factors that may be necessary for genetic competence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3