Role of the IE62 Consensus Binding Site in Transactivation by the Varicella-Zoster Virus IE62 Protein

Author:

White Kris1,Peng Hua1,Hay John1,Ruyechan William T.1

Affiliation:

1. Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York

Abstract

ABSTRACT The varicella-zoster virus (VZV) IE62 protein is the major transcriptional activator. IE62 is capable of associating with DNA both nonspecifically and in a sequence-specific manner via a consensus binding site (5′-ATCGT-3′). However, the function of the consensus site is poorly understood, since IE62 efficiently transactivates promoter elements lacking this sequence. In the work presented here, sequence analysis of the VZV genome revealed the presence of 245 IE62 consensus sites throughout the genome. Some 54 sites were found to be present within putative VZV promoters. Electrophoretic mobility shift assay (EMSA) experiments using an IE62 fragment containing the IE62 DNA-binding domain and duplex oligonucleotides that did or did not contain the IE62 consensus binding sequence yielded K D (equilibrium dissociation constant) values in the nanomolar range. Further, the IE62 DNA binding domain was shown to have a 5-fold-increased affinity for its consensus site compared to nonconsensus sequences. The effect of consensus site presence and position on IE62-mediated activation of native VZV and model promoters was examined using site-specific mutagenesis and transfection and superinfection reporter assays. In all promoters examined, the consensus sequence functioned as a distance-dependent repressive element. Protein recruitment assays utilizing the VZV gI promoter indicated that the presence of the consensus site increased the recruitment of IE62 but not Sp1. These data suggest a model where the IE62 consensus site functions to down-modulate IE62 activation, and interaction of IE62 with this sequence may result in loss or decrease of the ability of IE62 to recruit cellular factors needed for full promoter activation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3