Inhibition of Filamentation Can Be Used To Treat Disseminated Candidiasis

Author:

Saville Stephen P.1,Lazzell Anna L.1,Bryant Alexander P.2,Fretzen Angelika2,Monreal Alex2,Solberg Erik O.2,Monteagudo Carlos3,Lopez-Ribot Jose L.1,Milne G. Todd2

Affiliation:

1. Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, 6900 North Loop, 1604 West, San Antonio, Texas 78249

2. Microbia, Inc., 320 Bent St., Cambridge, Massachusetts 02141

3. Departmento de Patología, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain

Abstract

ABSTRACT Candida albicans remains the leading causative agent of invasive fungal infection. Although the importance of filamentation in C. albicans pathogenesis has been extensively investigated, in vivo studies to date have been unable to dissect the role of this developmental process in the establishment of infection versus the development of active disease as characterized by damage to the host leading to mortality. To address this issue, we genetically engineered a C. albicans tet-NRG1 strain in which filamentation and virulence can be modulated both in vitro and in vivo simply by the presence or absence of doxycycline (DOX): this strain enabled us, in a prior study, to demonstrate that yeast-form cells were able to infect the deep organs but caused no disease unless filamentation (induced by the addition of DOX) was allowed to occur. In the present study, we examined whether inhibiting filamentation (by withdrawing the DOX) at 24 or 48 h postinfection could serve as an effective therapeutic intervention against candidiasis. The results obtained indicate that DOX removal led to an alteration in the morphology of the infecting fungal cells and a dramatic increase in survival, but as with conventional antifungal drug therapy regimens, mortality rates increased markedly the longer this intervention was delayed. These observations reinforce the importance of invasive filamentous growth in causing the damage to the host and the lethality associated with active disease and suggest this process could be fruitfully targeted for the development of new antifungal agents.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3