Equine Herpesvirus 1 Enters Cells by Two Different Pathways, and Infection Requires the Activation of the Cellular Kinase ROCK1

Author:

Frampton Arthur R.1,Stolz Donna B.2,Uchida Hiroaki1,Goins William F.1,Cohen Justus B.1,Glorioso Joseph C.1

Affiliation:

1. Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

2. Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Abstract

ABSTRACT Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesviridae , displays a broad host range in vitro, allowing for detailed study of the mechanisms of productive infection, including attachment and entry, in various cell culture systems. Previously, we showed that EHV-1 infects Chinese hamster ovary (CHO-K1) cells even though these cells do not express a known alphaherpesvirus entry receptor. In this report, we show by electron microscopy and an infectious recovery assay that entry into CHO-K1 cells occurs via an endocytic or phagocytic mechanism, while entry into equine dermal (ED) or rabbit kidney (RK13) cells occurs by direct fusion at the cell surface. In both cases (endocytic/phagocytic or direct fusion), entry leads to productive infection. Using drugs that inhibit clathrin-dependent or caveola-dependent endocytosis, we showed that EHV-1 entry into CHO-K1 cells does not require clathrin or caveolae. We also show that EHV-1 infection requires the activation of cell signaling molecules. In particular, we demonstrate that activation of the serine/threonine Rho kinase ROCK1 is critical for infection. Inhibition of this kinase by drugs or overexpression of a negative regulator of ROCK1 significantly blocked EHV-1 infection. These results show that EHV-1 can enter disparate cell types by at least two distinct mechanisms and that productive infection is dependent upon the activation of ROCK1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3