Role of the Air-Water-Solid Interface in Bacteriophage Sorption Experiments

Author:

Thompson Shawn S.1,Flury Markus1,Yates Marylynn V.1,Jury William A.1

Affiliation:

1. Department of Soil and Environmental Sciences, University of California, Riverside, California 92521

Abstract

ABSTRACT Batch sorption experiments were carried out with the bacteriophages MS2 and φX174. Two types of reactor vessels, polypropylene and glass, were used. Consistently lower concentrations of MS2 were found in the liquid phase in the absence of soil (control blanks) than in the presence of soil after mixing. High levels of MS2 inactivation (∼99.9%) were observed in control tubes made of polypropylene (PP), with comparatively little loss of virus seen in PP tubes when soil was present. Minimal inactivation of MS2 was observed when the air-water interface was completely eliminated from PP control blanks during mixing. All batch experiments performed with reactor tubes made of glass demonstrated no substantial inactivation of MS2. In similar experiments, bacteriophage φX174 did not undergo inactivation in either PP or glass control blanks, implying that this virus is not affected by the same factors which led to inactivation of MS2 in the PP control tubes. When possible, phage adsorption to soil was calculated by the Freundlich isotherm. Our data suggest that forces associated with the air-water-solid interface (where the solid is a hydrophobic surface) are responsible for inactivation of MS2 in the PP control tubes. The influence of air-water interfacial forces should be carefully considered when batch sorption experiments are conducted with certain viruses.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference47 articles.

1. Ackerman H.-W. DuBow M. S. Viruses of prokaryotes 2 1987 CRC Press Boca Raton Fla

2. Surface inactivation of bacterial viruses and of proteins.;Adams M. H.;J. Gen. Physiol.,1948

3. Adams M. H. Bacteriophages. 1959 Interscience Publishers New York N.Y

4. Adamson A. W. Physical chemistry of surfaces 4th ed. 1982 Wiley Interscience New York N.Y

5. Some factors affecting the inactivation rate of the virus of tomato spotted wilt.;Bald J. G.;Ann. Appl. Biol.,1934

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3