Inhibition of vesicular stomatitis virus RNA synthesis by protein hyperphosphorylation

Author:

Chang T L1,Reiss C S1,Huang A S1

Affiliation:

1. Department of Biology, New York University, New York 10003-6688.

Abstract

Vesicular stomatitis virus (VSV) RNA synthesis requires the template nucleocapsid, the polymerase (L) protein, and the cofactor phosphorylated (P/NS) protein. To determine whether the degree of phosphorylation regulated VSV RNA synthesis, infected Chinese hamster ovary cells were treated with okadaic acid (OKA), a serine/threonine phosphatase inhibitor. OKA reduced viral penetration and uncoating but had little or no effect on primary transcription or viral protein synthesis. However, approximately 80% of total viral RNA synthesis was inhibited when 2 microM or more OKA was added to infected cells after viral uncoating had taken place. Analysis of proteins and RNA species in infected cells labeled with 32P showed that OKA led to hyperphosphorylation of two viral phosphoproteins, the P/NS protein and matrix protein (M), resulting in inhibition of full-length RNA synthesis and subsequent secondary transcription. Pulse-chase experiments demonstrated that the hyperphosphorylated P/NS species was converted rapidly from the less phosphorylated form. Hyperphosphorylated P/NS as well as the less phosphorylated form, but not M, were found to be associated with nucleocapsids isolated from cytoplasmic extracts. These results suggest that phosphorylation played an important role in the regulation between viral transcription and viral RNA replication as well as the turning off of RNA replication. Thus, phosphatase inhibitors promise to be a valuable tool for dissecting the regulatory mechanisms involving phosphorylated viral proteins.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3