Requirement of the 5'-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription

Author:

Liao C L1,Lai M M1

Affiliation:

1. Howard Hughes Medical Institute, University of Southern California, Los Angeles 90033-1054.

Abstract

We have developed a defective interfering (DI) RNA containing a chloramphenicol acetyltransferase reporter gene, placed behind an intergenic sequence, for studying subgenomic mRNA transcription of mouse hepatitis virus (MHV), a prototype coronavirus. Using this system, we have identified the sequence requirement for MHV subgenomic mRNA transcription. We show that this sequence requirement differs from that for RNA replication. In addition to the previously identified requirement for an intergenic (promoter) sequence, additional sequences from the 5' end of genomic RNA are required for subgenomic mRNA transcription. These upstream sequences include the leader RNA and a spacer sequence between the leader and intergenic sequence, which is derived from the 5' untranslated region and part of gene 1. The spacer sequence requirement is specific, since only the sequence derived from the 5' end of RNA genome, but not from other MHV genomic regions or heterologous sequences, could initiate subgenomic transcription from the intergenic sequence. These results strongly suggest that the wild-type viral subgenomic mRNAs (mRNA2 to mRNA7) and probably their counterpart subgenomic negative-sense RNAs cannot be utilized for mRNA amplification. Furthermore, we have demonstrated that a partial leader sequence present at the 5' end of genome, which lacks the leader-mRNA fusion sequence, could still support subgenomic mRNA transcription. In this case, the leader sequences of the subgenomic transcripts were derived exclusively from the wild-type helper virus, indicating that the MHV leader RNA initiates in trans subgenomic mRNA transcription. Thus, the leader sequence can enhance subgenomic transcription even when it cannot serve as a primer for mRNA synthesis. These results taken together suggest that the 5'-end leader sequence of MHV not only provides a trans-acting primer for mRNA initiation but also serves as a cis-acting element required for the transcription of subgenomic mRNAs. The identification of an upstream cis-acting element for MHV subgenomic mRNA synthesis defines a novel sequence requirement for regulating mRNA synthesis in RNA viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3