High-Level Diversity of Dinoflagellates in the Natural Environment, Revealed by Assessment of Mitochondrial cox1 and cob Genes for Dinoflagellate DNA Barcoding

Author:

Lin Senjie1,Zhang Huan1,Hou Yubo1,Zhuang Yunyun1,Miranda Lilibeth1

Affiliation:

1. Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340

Abstract

ABSTRACT DNA barcoding is a diagnostic technique for species identification using a short, standardized DNA. An effective DNA barcoding marker would be very helpful for unraveling the poorly understood species diversity of dinoflagellates in the natural environment. In this study, the potential utility for DNA barcoding of mitochondrial cytochrome c oxidase 1 ( cox1 ) and cytochrome b ( cob ) was assessed. Among several primer sets examined, the one amplifying a 385-bp cob fragment was most effective for dinoflagellates. This short cob fragment is easy to sequence and yet possess reasonable taxon resolution. While the lack of a uniform gap between interspecific and intraspecific distances poses difficulties in establishing a phylum-wide species-discriminating distance threshold, the variability of cob allows recognition of species within particular lineages. The potential of this cob fragment as a dinoflagellate species marker was further tested by applying it to an analysis of the dinoflagellate assemblages in Long Island Sound (LIS) and Mirror Lake in Connecticut. In LIS, a highly diverse assemblage of dinoflagellates was detected. Some taxa can be identified to the species and some to the genus level, including a taxon distinctly related to the bipolar species Polarella glacialis , and the large number of others cannot be clearly identified, due to the inadequate database. In Mirror Lake, a Ceratium species and an unresolved taxon were detected, exhibiting a temporal transition from one to the other. We demonstrate that this 385-bp cob fragment is promising for lineage-wise dinoflagellate species identification, given an adequate database.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3