Viability and metabolic capability are maintained by Escherichia coli, Pseudomonas aeruginosa, and Streptococcus lactis at very low adenylate energy charge

Author:

Barrette W C1,Hannum D M1,Wheeler W D1,Hurst J K1

Affiliation:

1. Department of Chemical and Biological Sciences, Oregon Graduate Center, Beaverton 97006-1999.

Abstract

Metabolic regulation by nucleotides has been examined in several bacteria within the context of the adenylate energy charge (EC) concept. The ECs of bacteria capable of only fermentative metabolism (Streptococcus lactis and the ATPase-less mutant Escherichia coli AN718) fell to less than 0.2 under carbon-limiting conditions, but the bacteria were able to step up the EC to greater than 0.8 upon exposure to nutrient sugars. Similarly, nongrowing E. coli 25922, whose EC had been artificially lowered to less than 0.1 by the addition of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), was able to immediately step up the EC to 0.8 to 0.9 upon the addition of glucose but was unable to respond to respiratory substrates. The EC of respiring bacteria (E. coli 25922 and Pseudomonas aeruginosa 27853) fell to 0.3 to 0.4 under certain limiting growth conditions, but the bacteria also responded immediately when challenged with succinate to give EC values greater than 0.8. These bacteria could not step up the EC with respiratory substrates in the presence of CCCP. For all bacteria, the loss of the ability to step up the EC was attributable to the loss of nutrient transport function. Mixtures of viable and HOCl-killed E. coli 25922 were able to step up the EC in proportion to the fraction of surviving cells. The data indicate that nucleotide phosphorylation levels are not regulatory in nongrowing bacteria but that the EC step-up achievable upon nutrient addition may be an accurate index of viability.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3