Author:
Rubin Erica J.,Herrera Carmen M.,Crofts Alexander A.,Trent M. Stephen
Abstract
ABSTRACTInSalmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. WhileEscherichia coliencodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from theS. entericaprotein. However, our laboratory previously observed that low concentrations of Mg2+, a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-typeE. coli(C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444–1460, 2010,http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate thatpmrDis required for modification of the lipid A domain ofE. colilipopolysaccharide (LPS) under low-Mg2+growth conditions. Further, RNA sequencing shows thatE. colipmrDinfluences the expression ofpmrAand its downstream targets, including genes coding for the modification enzymes that transfer pEtN andl-Ara4N to the lipid A molecule. In line with these findings, apmrDmutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activatingpmrDto promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB inE. colithan previously understood.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献