Expression and Mutational Analysis of the glnB Genomic Region in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

Author:

Paz-Yepes Javier1,Flores Enrique1,Herrero Antonia1

Affiliation:

1. Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, E-41092 Seville, Spain

Abstract

ABSTRACT In the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the glnB gene is expressed at considerable levels both in the presence and in the absence of combined nitrogen, although induction, influenced by NtcA, takes place upon combined-nitrogen deprivation likely localized to vegetative cells. In spite of extensive efforts, a derivative of PCC 7120 lacking a functional glnB gene could be obtained only with constructs that lead to overexpression of a downstream open reading frames (ORF), particularly all2318. Strain CSP10 [ glnB all2318(Con)] exhibited growth rates similar to those of the wild type when it was using nitrate or ammonium, but its diazotrophic growth was impaired. However, it differentiated heterocysts with a time course and distribution pattern similar to those of the wild type, although with no cyanophycin-containing polar granules, and exhibited impaired nitrogenase activity under oxic conditions, but not under microoxic conditions. In the mutant, NtcA-dependent inducion of the hetC and nifH genes was unaltered, but induction of the urtA gene and urea transport activity were increased. Active uptake of nitrite was also increased and insensitive to the ammonium-promoted inhibition observed for the wild type. Thus, regulation of the nitrite transport activity requires the glnB gene product. In the presence of a wild-type glnB gene, neither inactivation nor overexpression of all2318 produced an apparent phenotype. Thus, in an otherwise wild-type background, the glnB gene appears to be essential for growth of strain PCC 7120. For growth with combined nitrogen but not for diazotrophic growth, the requirement for glnB can be overridden by increasing the expression of all2318 (and/or ORFs downstream of it).

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3