Human herpesvirus 6A ts suppresses both transformation by H-ras and transcription by the H-ras and human immunodeficiency virus type 1 promoters

Author:

Araujo J C1,Doniger J1,Kashanchi F1,Hermonat P L1,Thompson J1,Rosenthal L J1

Affiliation:

1. Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C. 20007, USA.

Abstract

Human herpesvirus 6 strain U1102 (HHV-6A) was shown to contain a 1,473-bp functional transformation suppressor gene (ts). ts exhibited 24% identity and 51% similarity to adeno-associated virus type 2 Rep68/78. Like adeno-associated virus type 2 Rep68/78, HHV-6A ts suppressed H-ras transformation of NIH 3T3 cells. Suppression of H-ras transformation was eliminated by translation termination linker mutation at amino acid 25, 125, or 245. These data indicated the importance of the C-terminal portion of the ts protein. H-ras transformation was suppressed by ts only when H-ras was expressed by its endogenous H-ras promoter and not when it was expressed by the heterologous murine osteosarcoma virus long terminal repeat (LTR). Furthermore, ts suppressed chloramphenicol acetyltransferase (CAT) activity when the CAT gene was expressed from the H-ras promoter but not the murine osteosarcoma virus LTR promoter. Taken together, the data showed that ts suppressed H-ras transformation at the level of the H-ras promoter. To further identify the interaction of ts with transcriptional regulatory elements, the human immunodeficiency virus type 1 (HIV-1) LTR was used. This promoter was selected because it has well-defined transcriptional regulatory elements for both basal and activated transcription, because its activity is inhibited by the Rep68/78 gene, and because both HHV-6 and HIV-1 naturally infect CD4+ T cells in vivo and have been shown to infect the same cell in vitro. ts suppressed expression from both wild-type and upstream mutant HIV-1 LTR-CAT constructs. However, downstream HIV-1 TAR mutations reversed ts suppression, indicating that TAR is one of the critical elements involved. The data presented demonstrated that HHV-6A ts functionally suppressed H-ras transformation and HIV-1 LTR expression and thus that it may be useful in future gene therapy.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3