Characterization of Shiga Toxin-Producing Escherichia coli O26 Strains and Establishment of Selective Isolation Media for These Strains

Author:

Hiramatsu Reiji1,Matsumoto Masakado1,Miwa Yoshio1,Suzuki Yasumoto1,Saito Makoto1,Miyazaki Yutaka1

Affiliation:

1. Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsuji-machi, Kita-ku, Nagoya 462-8576, Japan

Abstract

ABSTRACT We characterized the carbohydrate-fermenting ability of 31 strains of Shiga toxin-producing Escherichia coli (STEC) O26 isolated from diarrhea patients in Aichi Prefecture, Japan, in order to establish selective isolation media for these strains. None of the 31 STEC O26 strains (24 O26:H11, 7 O26:H−) fermented rhamnose, whereas all of the other 108 STEC strains (100 O157, 8 O111) and all of the non-STEC strains except one (i.e., 58 of 59) fermented rhamnose. The great majority of the STEC O26 strains (96.8% [30 of 31]) showed very high resistance to potassium tellurite (MIC ≥ 50 μg/ml), whereas the majority of the non-STEC strains (72.9% [43 of 59]) showed very high sensitivity (MIC ≤ 1.56 μg/ml) to this compound. Accordingly, we developed a rhamnose-MacConkey (RMAC) medium in which the lactose in MacConkey medium was replaced by rhamnose, and cefixime-tellurite-RMAC (CT-RMAC) medium in which potassium tellurite (2.5 mg/liter) and cefixime (0.05 mg/liter) were added to RMAC. All of the STEC O26 strains generated colorless (rhamnose-nonfermented) colonies on both media; the vast majority of selected E. coli strains (95.7% [89 of 93; including 26 STEC O157, 8 STEC O111]), other than STEC O26, generated red colonies on RMAC, and most of the non-STEC strains (84.7% [50 of 59]) did not grow on CT-RMAC. We demonstrate that both the RMAC and the CT-RMAC media can be used for the isolation of STEC O26 and that CT-RMAC has better specificity for the routine isolation for STEC O26 in a laboratory.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3