Genetic Basis forIn VitroandIn VivoResistance to Lincosamides, Streptogramins A, and Pleuromutilins (LSAP Phenotype) in Enterococcus faecium

Author:

Isnard Christophe,Malbruny Brigitte,Leclercq Roland,Cattoir Vincent

Abstract

ABSTRACTAs opposed toEnterococcus faecalis, which is intrinsically resistant to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) by production of the ABC protein Lsa(A),Enterococcus faeciumis naturally susceptible. Since this phenotype may be selected forin vivoby quinupristin-dalfopristin (Q-D), the aim of this study was to investigate the molecular mechanism of acquired LSAP resistance inE. faecium. Six LSAP-resistantin vitromutants ofE. faeciumHM1070 as well as three different pairs of clinical isolates (pre- and postexposure to Q-D) were studied. The full genome sequence of anin vitromutant (E. faeciumUCN90B) was determined by using 454 sequencing technology and was compared with that of the parental strain. Single-nucleotide replacement was carried out to confirm the role of this mutation. By comparative genomic analysis, a point mutation was found within a 1,503-bp gene coding for an ABC homologue showing 66% amino acid identity with Lsa(A). This mutation (C1349T) led to an amino acid substitution (Thr450Ile). An identical mutation was identified in allin vitroandin vivoresistant strains but was not present in susceptible strains. The wild-type allele was namedeat(A) (forEnterococcusABCtransporter), and its mutated allelic variant was namedeat(A)v. The introduction ofeat(A)vfrom UCN90B into HM1070 conferred the LSAP phenotype, whereas that ofeat(A) from HM1070 into UCN90B restored susceptibility entirely. This is the first description of the molecular mechanism of acquired LSAP resistance inE. faecium. Characterization of the biochemical mechanism of resistance and the physiological role of this ABC protein need further investigations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference31 articles.

1. The rise of the Enterococcus: beyond vancomycin resistance;Arias;Nat. Rev. Microbiol.,2012

2. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce?;Cattoir;J. Antimicrob. Chemother.,2013

3. Quinupristin-dalfopristin and linezolid: evidence and opinion;Eliopoulos;Clin. Infect. Dis.,2003

4. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications;Leclercq;Clin. Infect. Dis.,2002

5. The pleuromutilin antibiotics: a new class for human use;Novak;Curr. Opin. Investig. Drugs,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3