DNA Replication of Induced Prophage in Haemophilus influenzae

Author:

Barnhart Benjamin J.1,Cox Summers H.1

Affiliation:

1. Biomedical Research Group, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

Abstract

DNA synthesis during transition from the lysogenic state to the lytic cycle and throughout the latter has been studied in Haemophilus influenzae BC200 (HP1c1). Following exposure to ultraviolet light, there is a 30-min delay in DNA synthesis after which there is a rapidly increasing rate of phage DNA synthesis. The phage genome is replicated without extensive utilization of segments or of breakdown products of the bacterial chromosome. The mode of phage DNA replication was investigated by zonal sedimentation of labeled DNA in 5 to 20% neutral and alkaline sucrose gradients. Tritiated thymidine, incorporated during a 2-min pulse given at 38 min, chases rapidly into DNA, sedimenting like linear DNA of approximately 2 × 10 8 daltons, and then, at the expense of label in this peak, chases into slower-sedimenting phage DNA (2 × 10 7 daltons). The fast-sedimenting, rapidly labeled DNA satisfies certain criteria for being a concatenated replicative intermediate. Observations in the electron microscope revealed linear concatemers in the faster-sedimenting material and circular phage-sized DNA in the slower-sedimenting DNA. When induced cells are gently lysed with lysozyme and Brij 58 to maintain DNA-membrane associations and sedimented in neutral sucrose over a cesium chloride shelf, the concatemer is found with the cell-membrane-wall complex. Membrane-associated label chases to membrane-free material sedimenting like deproteinized HP1c1 DNA. When membrane-associated DNA from the cesium chloride shelf is deproteinized and resedimented in neutral sucrose, the sedimentation profile reveals that sedimentation rates of labeled DNA from this complex are indicative of sizes ranging from 2 × 10 8 daltons down to phage-sized pieces of 2 to 3 × 10 7 daltons. A model is presented which places HP1c1-DNA replication on the cell membrane where a concatemer of phage DNA is synthesized and subsequently degraded to phage-equivalent DNA. Phage-equivalent DNA is then either released from the membrane for packaging or is packaged while still membrane associated. Thus, the cell membrane is not only the site of DNA replication during which phage DNA is synthesized in multiple phage-equivalent concatemers but it is also the site at which these concatemers are selectively reduced to phage-sized pieces.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transfection of Escherichia coli Spheroplasts: Infectious Lambda Prophage DNA;Journal of General Virology;1978-06-01

2. Mutation induction by MNNG in a bacteriophage of Haemophilus influenzae;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis;1976-10

3. An Haemophilus influenzae mutant which inhibits the growth of HP1c1 phage;Molecular and General Genetics MGG;1975-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3