Genes Coding for a New Pathway of Aerobic Benzoate Metabolism in Azoarcus evansii

Author:

Gescher Johannes1,Zaar Annette1,Mohamed Magdy1,Schägger Hermann2,Fuchs Georg1

Affiliation:

1. Mikrobiologie, Institut Biologie II, Universität Freiburg

2. Zentrum der Biologischen Chemie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt,Germany

Abstract

ABSTRACT A new pathway for aerobic benzoate oxidation has been postulated for Azoarcus evansii and for a Bacillus stearothermophilus -like strain. Benzoate is first transformed into benzoyl coenzyme A (benzoyl-CoA), which subsequently is oxidized to 3-hydroxyadipyl-CoA and then to 3-ketoadipyl-CoA; all intermediates are CoA thioesters. The genes coding for this benzoate-induced pathway were investigated in the β-proteobacterium A. evansii . They were identified on the basis of N-terminal amino acid sequences of purified benzoate metabolic enzymes and of benzoate-induced proteins identified on two-dimensional gels. Fifteen genes probably coding for the benzoate pathway were found to be clustered on the chromosome. These genes code for the following functions: a putative ATP-dependent benzoate transport system, benzoate-CoA ligase, a putative benzoyl-CoA oxygenase, a putative isomerizing enzyme, a putative ring-opening enzyme, enzymes for β-oxidation of CoA-activated intermediates, thioesterase, and lactone hydrolase, as well as completely unknown enzymes belonging to new protein families. An unusual putative regulator protein consists of a regulator protein and a shikimate kinase I-type domain. A deletion mutant with a deletion in one gene ( boxA ) was unable to grow with benzoate as the sole organic substrate, but it was able to grow with 3-hydroxybenzoate and adipate. The data support the proposed pathway, which postulates operation of a new type of ring-hydroxylating dioxygenase acting on benzoyl-CoA and nonoxygenolytic ring cleavage. A β-oxidation-like metabolism of the ring cleavage product is thought to lead to 3-ketoadipyl-CoA, which finally is cleaved into succinyl-CoA and acetyl-CoA.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference51 articles.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3