Ultrastructural Analysis of Differentiation in Legionella pneumophila

Author:

Faulkner Gary1,Garduño Rafael A.12

Affiliation:

1. Department of Microbiology and Immunology

2. Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada

Abstract

ABSTRACT Legionella pneumophila is an adaptive pathogen that replicates in the intracellular environment of fundamentally divergent hosts (freshwater protozoa and mammalian cells) and is capable of surviving long periods of starvation in water when between hosts. Physiological adaptation to these quite diverse environments seems to be accompanied by morphological changes (Garduño et al., p. 82-85, in Marre et al., ed., Legionella , 2001) and conceivably involves developmental differentiation. In following the fine-structural pathway of L. pneumophila through both in vitro and in vivo growth cycles, we have now discovered that this bacterium displays an unprecedented number of morphological forms, as revealed in ultrathin sections and freeze-fracture replicas for transmission electron microscopy. Many of the forms were identified by the obvious ultrastructural properties of their cell envelope, which included changes in the relative opaqueness of membrane leaflets, vesiculation, and/or profuse invagination of the inner membrane. These changes were best documented with image analysis software to obtain intensity tracings of the envelope in cross sections. Also prominent were changes in the distribution of intramembranous particles (clearly revealed in replicas of freeze-fractured specimens) and the formation of cytoplasmic inclusions. Our results confirm that L. pneumophila is a highly pleomorphic bacterium and clarify some early observations suggesting sporogenic differentiation in L. pneumophila . Since morphological changes occurred in a conserved sequence within the growth cycle, our results also provide strong evidence for the existence of a developmental cycle in L. pneumophila that is likely accompanied by profound physiological alterations and stage-specific patterns of gene expression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3