Tactic Responses to Oxygen in the Phototrophic Bacterium Rhodobacter sphaeroides WS8N

Author:

Romagnoli Simona1,Packer Helen L.1,Armitage Judith P.1

Affiliation:

1. Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom

Abstract

ABSTRACT The temporal and spatial behavior of a number of mutants of the photosynthetic, facultative anaerobe Rhodobacter sphaeroides to both step changes and to gradients of oxygen was analyzed. Wild-type cells, grown under a range of conditions, showed microaerophilic behavior, accumulating in a 1.3-mm band about 1.3 mm from the meniscus of capillaries. Evidence suggests this is the result of two signaling pathways. The strength of any response depended on the growth and incubation conditions. Deletion of either the complete chemosensory operons 1 and 2 plus the response regulator genes cheY 4 and cheY 5 or cheA 2 alone led to the loss of all aerotactic responses, although the cells still swam normally. The Prr system of R. sphaeroides responds to electron flow through the alternative high-affinity cytochrome oxidase, cbb 3 , controlling expression of a wide range of metabolic pathways. Mutants with deletions of either the complete Prr operon or the histidine kinase, PrrB, accumulated up to the meniscus but still formed a thick band 1.3 mm from the aerobic interface. This indicates that the negative aerotactic response to high oxygen levels depends on PrrB, but the mutant cells still retain the positive response. Tethered PrrB cells also showed no response to a step-down in oxygen concentration, although those with deletions of the whole operon showed some response. In gradients of oxygen where the concentration was reduced at 0.4 μM/s, tethered wild-type cells showed two different phases of response, with an increase in stopping frequency when the oxygen concentration fell from 80 to 50% dissolved oxygen and a decrease in stopping at 50 to 20% dissolved oxygen, with cells returning to their normal stopping frequency in 0% oxygen. PrrB and CheA 2 mutants showed no response, while PrrCBA mutants still showed some response.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3