Affiliation:
1. Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Abstract
ABSTRACT
Dendritic cells (DCs) are major targets of filovirus infection
in vivo
. Previous studies have shown that the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) suppress DC maturation
in vitro
. Both viruses also encode innate immune evasion functions. The EBOV VP35 (eVP35) and the MARV VP35 (mVP35) proteins each can block RIG-I-like receptor signaling and alpha/beta interferon (IFN-α/β) production. The EBOV VP24 (eVP24) and MARV VP40 (mVP40) proteins each inhibit the production of IFN-stimulated genes (ISGs) by blocking Jak-STAT signaling; however, this occurs by different mechanisms, with eVP24 blocking nuclear import of tyrosine-phosphorylated STAT1 and mVP40 blocking Jak1 function. MARV VP24 (mVP24) has been demonstrated to modulate host cell antioxidant responses. Previous studies demonstrated that eVP35 is sufficient to strongly impair primary human monocyte-derived DC (MDDC) responses upon stimulation induced through the RIG-I-like receptor pathways. We demonstrate that mVP35, like eVP35, suppresses not only IFN-α/β production but also proinflammatory responses after stimulation of MDDCs with RIG-I activators. In contrast, eVP24 and mVP40, despite suppressing ISG production upon RIG-I activation, failed to block upregulation of maturation markers or T cell activation. mVP24, although able to stimulate expression of antioxidant response genes, had no measurable impact of DC function. These data are consistent with a model where filoviral VP35 proteins are the major suppressors of DC maturation during filovirus infection, whereas the filoviral VP24 proteins and mVP40 are insufficient to prevent DC maturation.
IMPORTANCE
The ability to suppress the function of dendritic cells (DCs) likely contributes to the pathogenesis of disease caused by the filoviruses Ebola virus and Marburg virus. To clarify the basis for this DC suppression, we assessed the effect of filovirus proteins known to antagonize innate immune signaling pathways, including Ebola virus VP35 and VP24 and Marburg virus VP35, VP40, and VP24, on DC maturation and function. The data demonstrate that the VP35s from Ebola virus and Marburg virus are the major suppressors of DC maturation and that the effects on DCs of the remaining innate immune inhibitors are minor.
Funder
HHS | National Institutes of Health
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献