Quinolone Resistance in Staphylococci: Activities of New Nonfluorinated Quinolones against Molecular Targets in Whole Cells and Clinical Isolates

Author:

Roychoudhury Siddhartha1,Catrenich Carl E.1,McIntosh Eric J.1,McKeever Helana D.1,Makin Kelly M.1,Koenigs Paula M.1,Ledoussal Benoit1

Affiliation:

1. Procter & Gamble Pharmaceuticals, Mason, Ohio 45040

Abstract

ABSTRACT The activity of three new, 8-methoxy-nonfluorinated quinolones (NFQs) against multiple-drug-resistant staphylococci was investigated. First, using Staphylococcus aureus strains containing point mutations in the serine 84–80 hot spots of the target genes ( gyrA and grlA ), cell growth inhibition potencies of the NFQs as a result of DNA gyrase and topoisomerase IV inhibition were estimated and compared with those of known fluoroquinolones. The NFQs and clinafloxacin showed higher affinities toward both the targets than ciprofloxacin, trovafloxacin and gatifloxacin. Furthermore, the ratio of the calculated affinity parameter for DNA gyrase to that for topoisomerase IV was lower in the case of the NFQs, clinafloxacin, and gatifloxacin than in the case of ciprofloxacin and trovafloxacin. These results suggest that the former group of quinolones is better able to exploit both the targets. Next, using clinical isolates of methicillin-resistant S. aureus (MRSA; n = 34) and coagulase-negative staphylococci (CoNS; n = 24), the NFQs and clinafloxacin were shown to be more potent (MIC at which 90% of the isolates are inhibited [MIC 90 ] = 2 μg/ml for MRSA and 0.5 μg/ml for CoNS) than ciprofloxacin, trovafloxacin, and gatifloxacin (MIC 90 = 16 to >64 μg/ml for MRSA and 4 to >32 μg/ml for CoNS). Bactericidal kinetics experiments, using two MRSA isolates, showed that exposure to the NFQs at four times the MIC reduced the bacterial counts (measured in CFU per milliliter) by ≥3 log units in 2 to 4 h. Overall, the NFQs and clinafloxacin were less susceptible than the other quinolones to existing mechanisms of quinolone resistance in staphylococci.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3