Polymyxin Susceptibility in Pseudomonas aeruginosa Linked to the MexXY-OprM Multidrug Efflux System

Author:

Poole Keith,Lau Calvin Ho-Fung,Gilmour Christie,Hao Youai,Lam Joseph S.ORCID

Abstract

ABSTRACTThe ribosome-targeting antimicrobial, spectinomycin (SPC), strongly induced themexXYgenes of the MexXY-OprM multidrug efflux system inPseudomonas aeruginosaand increased susceptibility to the polycationic antimicrobials polymyxin B and polymyxin E, concomitant with a decrease in expression of the polymyxin resistance-promoting lipopolysaccharide (LPS) modification loci,arnBCADTEFand PA4773-74. Consistent with the SPC-promoted reduction inarnand PA4773-74 expression being linked tomexXY, expression of these LPS modification loci was moderated in a mutant constitutively expressingmexXYand enhanced in a mutant lacking the efflux genes. Still, the SPC-mediated increase in polymyxin susceptibility was retained in mutants lackingarnBand/or PA4773-74, an indication that their reduced expression in SPC-treated cells does not explain the enhanced polymyxin susceptibility. That the polymyxin susceptibility of a mutant strain lackingmexXYwas unaffected by SPC exposure, however, was an indication that the unknown polymyxin resistance ‘mechanism’ is also influenced by the MexXY status of the cell. In agreement with SPC and MexXY influencing polymyxin susceptibility as a result of changes in the LPS target of these agents, SPC treatment yielded a decline in common polysaccharide antigen (CPA) synthesis in wild-typeP. aeruginosabut not in the ΔmexXYmutant. A mutant lacking CPA still showed the SPC-mediated decline in polymyxin MICs, however, indicating that the loss of CPA did not explain the SPC-mediated MexXY-dependent increase in polymyxin susceptibility. It is possible, therefore, that some additional change in LPS promoted by SPC-inducedmexXYexpression impacted CPA synthesis or its incorporation into LPS and that this was responsible for the observed changes in polymyxin susceptibility.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3