In Vitro Lactate Metabolism by Ruminal Ingesta

Author:

Satter L. D.1,Esdale W. J.1

Affiliation:

1. Dairy Science Department, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Ruminal ingesta (300 ml) obtained from a fistulated cow fed alfalfa hay (H), 3.6 kg of grain mixture with corn silage fed ad libitum (S), 2.5:1 grain-alfalfa hay mixture (G), or a 2.5:1 grain-alfalfa hay mixture providing 545 g of sodium and calcium lactate daily (L) were incubated for 8 hr with nonpolymerized sodium lactate or 17% polymerized lactic acid neutralized to p H 6.7. Polymerization had no effect on the rate of lactate utilization. The initial rates of lactate metabolism for the H, G, S, and L ingesta were 0.72, 0.95, 1.8, and 3.4 meq per 100 ml of rumen fluid per hr, respectively. Lactate- 2 - 14 C was incubated for 4 hr with each type of ruminal ingesta. Of the label recovered in the volatile fatty acids (VFA), 74.1, 61.2, 49.3, and 38.9% was recovered in acetate, and 9.4, 19.8, 23.3, and 51.9% was recovered in propionate with H, G, S, and L ingesta, respectively. The balance of label was distributed between butyrate and valerate. The titratable VFA did not follow this pattern of production. With the hay ingesta, lactate metabolism resulted in a net loss of acetate and a large increase in butyrate. Little propionate was produced. The G, S, and L ingesta metabolized lactate to yield progressively more propionate and less butyrate. Evidence was gathered to suggest that acetate was the primary end product of lactate metabolism but that oxidation of lactate to pyruvate dictated the synthesis of butyrate from acetate to maintain an oxidation-reduction balance. It was noted that acetate and butyrate production from lactate was p H-dependent, with acetate production maximal at p H 7.4 and butyrate at 6.2. Propionate production was largely unaffected within this p H range.

Publisher

American Society for Microbiology

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference29 articles.

1. Annison E. F. and D. Lewis. 1959. Metabolism in the rumen p. 48. John Wiley and Sons Inc. New York.

2. Baldwin R. L. 1965. Physiology of digestion in the ruminant p. 379-389. In R. W. Daugherty [ed.] Butterworth Inc. Washington D.C.

3. Conversion of lactate-C14 to propionate by the rumen microflora;Baldwin R. L.;J. Bacteriol.,1962

4. The colorimetric determination of lactic acid in biological material;Barker S. B.;J. Biol. Chem.,1941

5. Baumgardt B. R. 1964. Practical observations on the quantitative analysis of free volatile fatty acids (VFA) in aqueous solutions by gasliquid chromatography. Univ. Wis. Dept. Dairy Sci. Dept. Bull. 1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3