A mutated membrane protein of vesicular stomatitis virus has an abnormal distribution within the infected cell and causes defective budding

Author:

Ono K,Dubois-Dalcq M E,Schubert M,Lazzarini R A

Abstract

Two temperature-sensitive (ts) mutants of the M protein of vesicular stomatitis virus (tsG31 and tsG33) are defective in viral assembly, but the exact nature of this defect is not known. When infected cells are switched from nonpermissive (40 degrees C) to permissive (32 degrees C) temperatures in the presence of cycloheximide, tsG33 virus release increased by 100-fold, whereas tsG31 release increased only by 10-fold. Thus, the tsG33 defect is more reversible than that of tsG31. Therefore, we investigated how the altered synthesis and cellular distribution of tsG33 M protein correlates with the viral assembly defect. At 32 degrees C tsG33 M protein is stained diffusely in the cell cytoplasm and later at the budding sites. In contrast, at 40 degrees C the mutant M protein formed unusual aggregates mostly located in the perinuclear regions of virus-infected cells and partially colocalized with G protein in this region. In temperature shift-down experiments, M can be disaggregated and used to some extent for nucleocapsid coiling and budding, which correlates with the virus titer increase. M aggregates also formed after shift-up from 32 to 40 degrees C, indicating a complete dependence of M aggregation on the temperature. Biochemical analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting revealed that at 40 degrees C M protein is detected exclusively in pellet fractions (nuclear and cytoskeleton components), whereas at 32 degrees C M protein is mainly in the cytoplasmic soluble fractions. Furthermore, when the temperature is raised from 32 to 40 degrees C, the distribution of M protein tends to shift from the soluble to the pellet and cytoskeletal fractions. Electron micrographs of immunoperoxidase-labeled M protein showed that at 40 degrees C M aggregates are often associated with the outer nuclear membranes as well as with vesicular structures. No nucleocapsid coiling was observed in these cells, whereas coiling and budding were seen at 32 degrees C in cells where M protein was partly associated with the plasma membrane. We suggest that the tsG33 M protein mutation may produce a reversible conformational alteration which causes M protein to aggregate at 40 degrees C, therefore inhibiting the proper association of M protein with nucleocapsids and budding membranes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3