Characterization of Rictor Phosphorylation Sites Reveals Direct Regulation of mTOR Complex 2 by S6K1

Author:

Dibble Christian C.1,Asara John M.23,Manning Brendan D.1

Affiliation:

1. Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts

2. Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts

3. Department of Medicine, Harvard Medical School, Boston, Massachusetts

Abstract

ABSTRACT The mammalian target of rapamycin (mTOR) functions within two distinct complexes (mTORC1 and mTORC2) to control cell growth, proliferation, survival, and metabolism. While there has been great progress in our understanding of mTORC1 regulation, the signaling mechanisms that regulate mTORC2 have not been defined. In this study, we use liquid chromatography-tandem mass spectrometry analyses to identify 21 phosphorylation sites on the core mTORC2 component Rictor. We find that one site, T1135, undergoes growth factor-responsive phosphorylation that is acutely sensitive to rapamycin and is phosphorylated downstream of mTORC1. We find that Rictor-T1135 is directly phosphorylated by the mTORC1-dependent kinase S6K1. Although this phosphorylation event does not affect mTORC2 integrity or in vitro kinase activity, expression of a phosphorylation site mutant of Rictor (T1135A) in either wild-type or Rictor null cells causes an increase in the mTORC2-dependent phosphorylation of Akt on S473. However, Rictor-T1135 phosphorylation does not appear to regulate mTORC2-mediated effects on SGK1 or PKCα. While the precise molecular mechanism affecting Akt is unknown, phosphorylation of T1135 stimulates binding of Rictor to 14-3-3 proteins. We provide evidence that Rictor-T1135 phosphorylation acts in parallel with other mTORC1-dependent feedback mechanisms, such as those affecting IRS-1 signaling to PI3K, to regulate the response of Akt to insulin.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3