Microbial Diversity in Anaerobic Sediments at Río Tinto, a Naturally Acidic Environment with a High Heavy Metal Content

Author:

Sánchez-Andrea Irene12,Rodríguez Nuria3,Amils Ricardo123,Sanz José Luis1

Affiliation:

1. Universidad Autónoma de Madrid, Departamento de Biología Molecular, 28049 Madrid, Spain

2. Centro de Biología Molecular Severo Ochoa, UAM-CSIC, 28049 Madrid, Spain

3. Centro de Astrobiología, INTA-CSIC, Ctra. Ajalvir-Torrejón de Ardoz, 28850 Madrid, Spain

Abstract

ABSTRACT The Tinto River is an extreme environment located at the core of the Iberian Pyritic Belt (IPB). It is an unusual ecosystem due to its size (100 km long), constant acidic pH (mean pH, 2.3), and high concentration of heavy metals, iron, and sulfate in its waters, characteristics that make the Tinto River Basin comparable to acidic mine drainage (AMD) systems. In this paper we present an extensive survey of the Tinto River sediment microbiota using two culture-independent approaches: denaturing gradient gel electrophoresis and cloning of 16S rRNA genes. The taxonomic affiliation of the Bacteria showed a high degree of biodiversity, falling into 5 different phyla: Proteobacteria , Firmicutes , Bacteroidetes , Acidobacteria , and Actinobacteria ; meanwhile, all the Archaea were affiliated with the order Thermoplasmatales . Microorganisms involved in the iron ( Acidithiobacillus ferrooxidans , Sulfobacillus spp., Ferroplasma spp., etc.), sulfur ( Desulfurella spp., Desulfosporosinus spp., Thermodesulfobium spp., etc.), and carbon ( Acidiphilium spp., Bacillus spp., Clostridium spp., Acidobacterium spp., etc.) cycles were identified, and their distribution was correlated with physicochemical parameters of the sediments. Ferric iron was the main electron acceptor for the oxidation of organic matter in the most acid and oxidizing layers, so acidophilic facultative Fe(III)-reducing bacteria appeared widely in the clone libraries. With increasing pH, the solubility of iron decreases and sulfate-reducing bacteria become dominant, with the ecological role of methanogens being insignificant. Considering the identified microorganisms—which, according to the rarefaction curves and Good's coverage values, cover almost all of the diversity—and their corresponding metabolism, we suggest a model of the iron, sulfur, and organic matter cycles in AMD-related sediments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3