Nonreplicating Influenza A Virus Vaccines Confer Broad Protection against Lethal Challenge

Author:

Baz Mariana1,Boonnak Kobporn1,Paskel Myeisha1,Santos Celia1,Powell Timothy2,Townsend Alain2,Subbarao Kanta1

Affiliation:

1. Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA

2. Molecular Immunology Group, Human Immunology Unit, Weatherall Institute, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom

Abstract

ABSTRACT New vaccine technologies are being investigated for their ability to elicit broadly cross-protective immunity against a range of influenza viruses. We compared the efficacies of two intranasally delivered nonreplicating influenza virus vaccines (H1 and H5 S-FLU) that are based on the suppression of the hemagglutinin signal sequence, with the corresponding H1N1 and H5N1 cold-adapted ( ca ) live attenuated influenza virus vaccines in mice and ferrets. Administration of two doses of H1 or H5 S-FLU vaccines protected mice and ferrets from lethal challenge with homologous, heterologous, and heterosubtypic influenza viruses, and two doses of S-FLU and ca vaccines yielded comparable effects. Importantly, when ferrets immunized with one dose of H1 S-FLU or ca vaccine were challenged with the homologous H1N1 virus, the challenge virus failed to transmit to naive ferrets by the airborne route. S-FLU technology can be rapidly applied to any emerging influenza virus, and the promising preclinical data support further evaluation in humans. IMPORTANCE Influenza viruses continue to represent a global public health threat, and cross-protective vaccines are needed to prevent seasonal and pandemic influenza. Currently licensed influenza vaccines are based on immunity to the hemagglutinin protein that is highly variable. However, T cell responses directed against highly conserved viral proteins contribute to clearance of the virus and confer broadly cross-reactive and protective immune responses against a range of influenza viruses. In this study, two nonreplicating pseudotyped influenza virus vaccines were compared with their corresponding live attenuated influenza virus vaccines, and both elicited robust protection against homologous and heterosubtypic challenge in mice and ferrets, making them promising candidates for further evaluation in humans.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3