Reciprocal Regulation of Anaerobic and Aerobic Cell Wall Mannoprotein Gene Expression in Saccharomyces cerevisiae

Author:

Abramova Natalia1,Sertil Odeniel1,Mehta Sapna1,Lowry Charles V.1

Affiliation:

1. Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York

Abstract

ABSTRACT The DAN/TIR genes encode nine cell wall mannoproteins in Saccharomyces cerevisiae which are expressed during anaerobiosis ( DAN1 , DAN2 , DAN3 , DAN4 , TIR1 , TIR2 , TIR3 , TIR4 , and TIP1 ). Most are expressed within an hour of an anaerobic shift, but DAN2 and DAN3 are expressed after about 3 h. At the same time, CWP1 and CWP2 , the genes encoding the major mannoproteins, are down-regulated, suggesting that there is a programmed remodeling of the cell wall in which Cwp1 and Cwp2 are replaced by nine anaerobic counterparts. TIP1 , TIR1 , TIR2 , and TIR4 are also induced during cold shock. Correspondingly, CWP1 is down-regulated during cold shock. As reported elsewhere, Mox4 is a heme-inhibited activator, and Mot3 is a heme-induced repressor of the DAN/TIR genes (but not of TIP1 ). We show that CWP2 (but not CWP1 ) is controlled by the same factors, but in reverse fashion—primarily by Mot3 (which can function as either an activator or repressor) but also by Mox4, accounting for the reciprocal regulation of the two groups of genes. Disruptions of TIR1 , TIR3 , or TIR4 prevent anaerobic growth, indicating that each protein is essential for anaerobic adaptation. The Dan/Tir and Cwp proteins are homologous, with the greatest similarities shown within three subgroups: the Dan proteins, the Tip and Tir proteins, and, more distantly, the Cwp proteins. The clustering of homology corresponds to differences in expression: the Tip and Tir proteins are expressed during hypoxia and cold shock, the Dan proteins are more stringently repressed by oxygen and insensitive to cold shock, and the Cwp proteins are oppositely regulated by oxygen and temperature.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3