F-actin and myosin F control apicoplast elongation dynamics which drive apicoplast-centrosome association in Toxoplasma gondii

Author:

Devarakonda Parvathi Madhavi1,Sarmiento Valeria1,Heaslip Aoife T.1ORCID

Affiliation:

1. Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut, USA

Abstract

ABSTRACT Toxoplasma gondii contains an essential plastid organelle called the apicoplast that is necessary for fatty acid, isoprenoid, and heme synthesis. Perturbations affecting apicoplast function or inheritance lead to parasite death. The apicoplast is a single copy organelle and, therefore, must be divided so that each daughter parasite inherits an apicoplast during cell division. In this study, we identify new roles for F-actin and an unconventional myosin motor, TgMyoF, in this process. First, loss of TgMyoF and actin lead to an accumulation of apicoplast vesicles in the cytosol indicating a role for this actomyosin system in apicoplast protein trafficking or morphological integrity of the organelle. Second, live cell imaging reveals that during division the apicoplast is highly dynamic, exhibiting branched, U-shaped and linear morphologies that are dependent on TgMyoF and actin. In parasites where movement was inhibited by the depletion of TgMyoF, the apicoplast fails to associate with the parasite centrosomes. Thus, this study provides crucial new insight into mechanisms controlling apicoplast-centrosome association, a vital step in the apicoplast division cycle, which ensures that each daughter inherits a single apicoplast. IMPORTANCE Toxoplasma gondii and most other parasites in the phylum Apicomplexa contain an apicoplast, a non-photosynthetic plastid organelle required for fatty acid, isoprenoid, iron-sulfur cluster, and heme synthesis. Perturbation of apicoplast function results in parasite death. Thus, parasite survival critically depends on two cellular processes: apicoplast division to ensure every daughter parasite inherits a single apicoplast, and trafficking of nuclear encoded proteins to the apicoplast. Despite the importance of these processes, there are significant knowledge gaps in regards to the molecular mechanisms which control these processes; this is particularly true for trafficking of nuclear-encoded apicoplast proteins. This study provides crucial new insight into the timing of apicoplast protein synthesis and trafficking to the apicoplast. In addition, this study demonstrates how apicoplast-centrosome association, a key step in the apicoplast division cycle, is controlled by the actomyosin cytoskeleton.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3