SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity

Author:

Zhang Fengwen1,Schmidt Fabian1,Muecksch Frauke1,Wang Zijun2,Gazumyan Anna23,Nussenzweig Michel C.23ORCID,Gaebler Christian2,Caskey Marina2,Hatziioannou Theodora1ORCID,Bieniasz Paul D.13ORCID

Affiliation:

1. Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA

2. Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA

3. Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA

Abstract

ABSTRACT The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. We investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, the removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain and the receptor-binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated S protein and reduced S trafficking to the cell surface. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies cloned from convalescent individuals. The N343 glycan reduced the overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 S glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan. IMPORTANCE The attachment of glycans to the spike proteins of viruses during their synthesis and movement through the secretory pathway can affect their properties. This study shows that the glycans attached to the severe acute respiratory syndrome coronavirus-2 spike protein enable its movement to the cell surface and incorporation into virus particles. Certain glycans, including one that is attached to asparagine 343 in the receptor-binding domain of the spike protein, can also affect virus neutralization by antibodies. This glycan can increase or decrease sensitivity to individual antibodies, likely through direct effects on antibody epitopes and modulation of spike conformation. However, the overall effect of the glycan in the context of the polyclonal mixture of antibodies in convalescent serum is to reduce neutralization sensitivity. Overall, this study highlights the complex effects of glycosylation on spike protein function and immune evasion.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3