Gammaherpesvirus Small Noncoding RNAs Are Bifunctional Elements That Regulate Infection and Contribute to Virulence In Vivo

Author:

Diebel Kevin W.1,Oko Lauren M.1,Medina Eva M.1,Niemeyer Brian F.1,Warren Cody J.1,Claypool David J.1,Tibbetts Scott A.2,Cool Carlyne D.34,Clambey Eric T.5,van Dyk Linda F.1

Affiliation:

1. Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA

2. Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA

3. Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA

4. Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA

5. Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA

Abstract

ABSTRACT Many viruses express noncoding RNAs (ncRNAs). The gammaherpesviruses (γHVs), including Epstein-Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine γHV68, each contain multiple ncRNA genes, including microRNAs (miRNAs). While these ncRNAs can regulate multiple host and viral processes in vitro , the genetic contribution of these RNAs to infection and pathogenesis remains largely unknown. To study the functional contribution of these RNAs to γHV infection, we have used γHV68, a small-animal model of γHV pathogenesis. γHV68 encodes eight small hybrid ncRNAs that contain both tRNA-like elements and functional miRNAs. These genes are transcribed by RNA polymerase III and are referred to as the γHV68 TMERs (tRNA-miRNA-encoded RNAs). To determine the total concerted genetic contribution of these ncRNAs to γHV acute infection and pathogenesis, we generated and characterized a recombinant γHV68 strain devoid of all eight TMERs. TMER-deficient γHV68 has wild-type levels of lytic replication in vitro and normal establishment of latency in B cells early following acute infection in vivo . In contrast, during acute infection of immunodeficient mice, TMER-deficient γHV68 has reduced virulence in a model of viral pneumonia, despite having an enhanced frequency of virus-infected cells. Strikingly, expression of a single viral tRNA-like molecule, in the absence of all other virus-encoded TMERs and miRNAs, reverses both attenuation in virulence and enhanced frequency of infected cells. These data show that γHV ncRNAs play critical roles in acute infection and virulence in immunocompromised hosts and identify these RNAs as a new potential target to modulate γHV-induced infection and pathogenesis. IMPORTANCE The gammaherpesviruses (γHVs) are a subfamily of viruses associated with chronic inflammatory diseases and cancer, particularly in immunocompromised individuals. These viruses uniformly encode multiple types of noncoding RNAs (ncRNAs) that are not translated into proteins. It remains unclear how virus-expressed ncRNAs influence the course and outcome of infection in vivo . Here, we generated a mouse γHV that lacks the expression of multiple ncRNAs. Notably, this mutant virus is critically impaired in the ability to cause disease in immunocompromised hosts yet shows a paradoxical increase in infected cells early during infection in these hosts. While the original mouse virus encodes multiple ncRNAs, the expression of a single domain of one ncRNA can partially reverse the defects of the mutant virus. These studies demonstrate that γHV ncRNAs can directly contribute to virus-induced disease in vivo and that these RNAs may be multifunctional, allowing the opportunity to specifically interfere with different functional domains of these RNAs.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3