Gentamicin Uptake in Wild-Type and Aminoglycoside-Resistant Small-Colony Mutants ofStaphylococcus aureus

Author:

Miller Michael H.1,Edberg Stephen C.2,Mandel Laura J.1,Behar Caren F.1,Steigbigel Neal H.1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Montefiore Hospital and Medical Center, and Departments of Medicine,1 and Albert Einstein College of Medicine, Bronx, New York 10467

2. Division of Microbiology, Department of Pathology, Pathology,2 and Microbiology and Immunology,2 and Albert Einstein College of Medicine, Bronx, New York 10467

Abstract

Gentamicin uptake and killing were studied in aminoglycoside-susceptible wild-typeStaphylococcus aureusstrains and aminoglycoside-resistant small-colony mutants selected by gentamicin from these strains. In wild-typeS. aureusthree phases of gentamicin accumulation were noted, and killing occurred during the last and most rapid phase of uptake. Uptake and killing were abolished by anaerobic growth and sodium azide, suggesting that energy-dependent active drug transport required respiration. Treatment of wild-type strains with the uncouplersN,N′-dicyclohexyl carbodiimide (DCCD) and carbonyl cyanide-m-chlorophenyl hydrazone showed disparate effects on gentamicin uptake, producing enhanced and diminished accumulations, respectively. Small-colony mutants demonstrated markedly deficient uptake compared with the wild-type strains and were not killed by gentamicin in concentrations up to 10 μg/ml. Several classes of aminoglycoside-resistant mutant strains are described. One mutant strain was a menadione auxotroph which, when grown in the presence of menadione, exhibited normal gentamicin uptake and killing. Gentamicin uptake and killing in this strain were abolished by KCN when the strain was grown in a medium supplemented with menadione. The membrane adenosine triphosphatase inhibitor DCCD was lethal for this mutant but not for other mutants or wild-type strains. Preincubation with menadione prevented the lethal effect of DCCD, and this strain demonstrated normal gentamicin accumulation when exposed to both DCCD and menadione. A second mutant strain demonstrated both gentamicin uptake and killing in the presence but not the absence of DCCD. Studies with small-colony mutants ofS. aureusindicated that the defect in aminoglycoside uptake is very likely related to an inability to generate or maintain energized membranes from respiration. These studies suggest that the membrane energization associated with active aminoglycoside accumulation requires electron transport for the generation of a protonmotive force.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3