Affiliation:
1. Biophysics Program, Department of Biological Sciences, Stanford University, Stanford, California 94305
Abstract
The relationships between macromolecular synthesis and viability have been studied in the pleuropneumonia-like organism
Mycoplasma laidlawii
B adapted to a semidefined grwoth medium. This organism exhibited an absolute growth requirement for the nucleosides uridine and thymidine, a partial requirement for guanosine and deoxyguanosine, but no requirement for adenosine, deoxyadenosine, cytosine, and deoxycytosine. Cytosine and deoxycytosine partially satisfied the requirement for uridine. Loss in viability resulted from thymidine deprivation, but not from a deficiency in other growth requirements. This phenomenon of thymineless death in a mycoplasma is similar in many respects to that reported in other bacterial systems. Chloramphenicol specifically inhibited protein synthesis and allowed deoxyribonucleic acid synthesis to proceed to only about 40% of that normally produced per generation period, while causing less inhibition of ribonucleic acid synthesis. Protein synthesis inhibition permitted thymineless death to a survival level of less than 0.5%, but ribonucleic acid synthesis inhibition resulted in a higher (10%) survival level. These results are consistent with previously noted aspects of thymineless death in
Escherichia coli
strains, which suggest that thymineless death is coupled to ribonucleic acid synthesis.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献