Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures

Author:

Tang Jia1,Zhuang Li1,Ma Jinlian1,Tang Ziyang1,Yu Zhen1,Zhou Shungui1

Affiliation:

1. Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, China

Abstract

ABSTRACT The transformation of ferrihydrite to stable iron oxides over time has important consequences for biogeochemical cycling of many metals and nutrients. The response of methanogenic activity to the presence of iron oxides depends on the type of iron mineral, but the effects of changes in iron mineralogy on methanogenesis have not been characterized. To address these issues, we constructed methanogenic cocultures of Geobacter and Methanosarcina strains with different ferrihydrite mineralization pathways. In this system, secondary mineralization products from ferrihydrite are regulated by the presence or absence of phosphate. In cultures producing magnetite as the secondary mineralization product, the rates of methanogenesis from acetate and ethanol increased by 30.2% and 135.3%, respectively, compared with a control lacking ferrihydrite. Biogenic magnetite was proposed to promote direct interspecies electron transfer between Geobacter and Methanosarcina in a manner similar to that of c -type cytochrome and thus facilitate methanogenesis. Vivianite biomineralization from ferrihydrite in the presence of phosphate did not significantly influence the methanogenesis processes. The correlation between magnetite occurrence and facilitated methanogenesis was supported by increased rates of methane production from acetate and ethanol with magnetite supplementation in the defined cocultures. Our data provide a new perspective on the important role of iron biomineralization in biogeochemical cycling of carbon in diverse anaerobic environments. IMPORTANCE It has been found that microbial methanogenesis is affected by the presence of iron minerals, and their influences on methanogenesis are associated with the mineralogical properties of the iron minerals. However, how changes in iron mineralogy affect microbial methanogenesis has not been characterized. To address this issue, we constructed methanogenic cocultures of Geobacter and Methanosarcina strains with different ferrihydrite mineralization pathways. The experimental results led to two contributions, i.e., (i) the transformation of iron minerals might exert an important influence on methanogenesis under anaerobic conditions and (ii) both biogenic and chemical magnetite can accelerate syntrophic ethanol oxidization between Geobacter metallireducens and Methanosarcina barkeri . This study sheds new light on the important role of iron biomineralization in the biogeochemical cycling of carbon in diverse anaerobic environments, particularly in iron-rich natural and agricultural wetland soils.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3