Improved Identification of Epidemiologically Related Strains of Salmonella enterica by use of a Fusion Algorithm Based on Pulsed-Field Gel Electrophoresis and Multiple-Locus Variable-Number Tandem-Repeat Analysis

Author:

Broschat S. L.12,Call D. R.12,Davis M. A.2,Meng D.1,Lockwood S.1,Ahmed R.3,Besser T. E.2

Affiliation:

1. School of Electrical Engineering and Computer Science

2. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164

3. National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada

Abstract

ABSTRACT Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) are used to assess genetic similarity between bacterial strains. There are cases, however, when neither of these methods quantifies genetic variation at a level of resolution that is well suited for studying the molecular epidemiology of bacterial pathogens. To improve estimates based on these methods, we propose a fusion algorithm that combines the information obtained from both PFGE and MLVA assays to assess epidemiological relationships. This involves generating distance matrices for PFGE data (Dice coefficients) and MLVA data (single-step stepwise-mutation model) and modifying the relative distances using the two different data types. We applied the algorithm to a set of Salmonella enterica serovar Typhimurium isolates collected from a wide range of sampling dates, locations, and host species. All three classification methods (PFGE only, MLVA only, and fusion) produced a similar pattern of clustering relative to groupings of common phage types, with the fusion results being slightly better. We then examined a group of serovar Newport isolates collected over a limited geographic and temporal scale and showed that the fusion of PFGE and MLVA data produced the best discrimination of isolates relative to a collection site (farm). Our analysis shows that the fusion of PFGE and MLVA data provides an improved ability to discriminate epidemiologically related isolates but provides only minor improvement in the discrimination of less related isolates.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3