Enzymological Characteristics of the Hyperthermostable NAD-Dependent Glutamate Dehydrogenase from the Archaeon Pyrobaculum islandicum and Effects of Denaturants and Organic Solvents

Author:

Kujo Chizu1,Ohshima Toshihisa1

Affiliation:

1. Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima 770-8506, Japan

Abstract

ABSTRACT NAD-dependent glutamate dehydrogenase ( l -glutamate:NAD oxidoreductase, deaminating; EC 1.4.1.2 ) was purified to homogeneity from a crude extract of the continental hyperthermophilic archaeon Pyrobaculum islandicum by two successive Red Sepharose CL-4B affinity chromatographies. The enzyme is the most thermostable NAD-dependent dehydrogenase found to date; the activity was not lost after incubation at 100°C for 2 h. The enzyme activity increased linearly with temperature, and the maximum was observed at ca. 90°C. The enzyme has a molecular mass of about 220 kDa and consists of six subunits with identical molecular masses of 36 kDa. The enzyme required NAD as a coenzyme for l -glutamate deamination and was different from the NADP-dependent glutamate dehydrogenase from other hyperthermophiles. The K m values for NAD, l -glutamate, NADH, 2-oxoglutarate, and ammonia were 0.025, 0.17, 0.0050, 0.066, and 9.7 mM, respectively. The enzyme activity was significantly increased by the addition of denaturants such as guanidine hydrochloride and some water-miscible organic solvents such as acetonitrile and tetrahydrofuran. When fluorescence of the enzyme was measured in the presence of guanidine hydrochloride, a significant emission spectrum change and a shift in the maximum were observed but not in the presence of urea. These results indicate that this hyperthermophilic enzyme may have great potential in applications to biosensor and bioreactor processes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3