Desulfurization of Dibenzothiophene and Diesel Oils by a Newly Isolated Gordona Strain, CYKS1

Author:

Rhee Sung-Keun1,Chang Je Hwan1,Chang Yong Keun1,Chang Ho Nam1

Affiliation:

1. BioProcess Engineering Research Center and Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusung-gu, Taejon 305-701, Korea

Abstract

ABSTRACT A dibenzothiophene (DBT)-desulfurizing bacterial strain was isolated and identified as Gordona strain CYKS1. Strain CYKS1 was found to transform DBT to 2-hydroxybiphenyl via the 4S pathway and to be able to also use organic sulfur compounds other than DBT as a sole sulfur source. Its desulfurization activity was susceptible to sulfate repression. Active resting cells for desulfurization could be prepared only in the early growth phase. When two types of diesel oils, middle distillate unit feed (MDUF) and light gas oil (LGO) containing various organic sulfur compounds including DBT, were treated with resting cells of strain CYKS1 for 12 h, the total sulfur content significantly decreased, from 0.15% (wt/wt) to 0.06% (wt/wt) for MDUF and from 0.3% (wt/wt) to 0.25% (wt/wt) for LGO. The newly isolated strain CYKS1 is considered to have good potential for application in the biodesulfurization of fossil fuels.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3