Boundaries and structure of human cytomegalovirus oriLyt, a complex origin for lytic-phase DNA replication

Author:

Anders D G1,Kacica M A1,Pari G1,Punturieri S M1

Affiliation:

1. Wadsworth Center for Laboratories and Research, School of Public Health, State University of New York, Albany 12201-0509.

Abstract

We have localized a cis-acting sequence that promotes initiation of lytic-phase DNA replication (oriLyt) within the HindIII D fragment of the human cytomegalovirus (HCMV) AD169 genome and investigated its sequence requirements by testing the ability of plasmid constructs to mediate DNA replication in a transient transfection-plus-infection assay. Replication of plasmids containing HCMV oriLyt required at least the virus-specified DNA polymerase activity supplied by HCMV infection of transfected cells and was autonomous in that it did not result from recombination with the virus genome. Progeny molecules in the transient assay were high-molecular-weight tandem oligomers, which is consistent with predictions of a rolling-circle model. Experiments testing subclones of HindIII-D defined a core 2.4-kbp region containing elements required for oriLyt function that extended rightward from around 1.0 kbp upstream of UL57 near the middle of the long unique component of the virus genome. Sequences flanking this core also were needed for full activity. The defined region contains at least four clustered sets of repeated sequence elements identical to or candidate counterparts of elements present in the corresponding cytomegalovirus Colburn lytic-phase replication origin. These elements are novel in that they apparently do not correspond to previously characterized motifs. Also present are multiple copies of elements similar to known binding sites for the transcription factors ATF/CREB, MLTF/USF, and Sp1. Preliminary deletion analysis suggests that multiple components within the boundaries of oriLyt cooperate to enable initiation of HCMV lytic-phase DNA synthesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3