Affiliation:
1. Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266.
Abstract
The poliovirus RNA polymerase error frequency was measured in vivo at eight sites in the poliovirus genome. The frequency at which specific G residues in poliovirion RNA changed to another base during one round of viral RNA replication was determined. Poliovirion RNA uniformly labeled with 32Pi was hybridized to a synthetic DNA oligonucleotide that was complementary to a sequence in the viral genome that contained a single internal G residue. The nonhybridized viral RNA was digested with RNase T1, and the protected RNA oligonucleotide was purified by gel electrophoresis. The base substitution frequency at the internal G residue was measured by finding the fraction of this RNA oligonucleotide that was resistant to RNase T1 digestion. A mean value of 2.0 x 10(-3) +/- 1.2 x 10(-3) was obtained at two sites. A modification of the above procedure involved the use of 5'-end-labeled RNA oligonucleotides. The mean value of the error frequency determined at eight sites in the viral genome by using this technique was 4.1 x 10(-3) +/- 0.6 x 10(-3). Sequencing two of the RNase T1-resistant RNA oligonucleotides confirmed that the internal G was changed to a C, A, or U residue in most of these oligonucleotides. Thus, our results indicated that the polymerase had a high error frequency in vivo and that there was no significant variation in the values determined at the specific sites examined in this study.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献