Recovery of NV Knockout Infectious Hematopoietic Necrosis Virus Expressing Foreign Genes

Author:

Biacchesi Stéphane1,Thoulouze Maria-Isabel1,Béarzotti Monique1,Yu Yan-Xing1,Brémont Michel1

Affiliation:

1. Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France

Abstract

ABSTRACT Infectious hematopoietic necrosis virus (IHNV) is a Novirhabdovirus and is the causative agent of a devastating acute, lethal disease in wild and farmed rainbow trout. The virus is enzootic throughout western North America and has spread to Asia and Europe. A full-length cDNA of the IHNV antigenome (pIHNV-Pst) was assembled from subgenomic overlapping cDNA fragments and cloned in a transcription plasmid between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme. Recombinant IHNV (rIHNV) was recovered from fish cells at 14°C, following infection with a recombinant vaccinia virus expressing the T7 RNA polymerase (vTF7-3) and cotransfection of pIHNV-Pst together with plasmids encoding the nucleoprotein N (pT7-N), the phosphoprotein P (pT7-P), the RNA polymerase L (pT7-L), and the nonvirion protein NV (pT7-NV). When pT7-N and pT7-NV were omitted, rIHNV was also recovered, although less efficiently. Incidental mutations introduced in pIHNV-Pst were all present in the rIHNV genome; however, a targeted mutation located in the L gene was eliminated from the recombinant genome by homologous recombination with the added pT7-L expression plasmid. To investigate the role of NV protein in virus replication, the pIHNV-Pst construct was engineered such that the entire NV open reading frame was deleted and replaced by the genes encoding green fluorescent protein or chloramphenicol acetyltransferase. The successful recovery of recombinant virus expressing foreign genes instead of the NV gene demonstrated that the NV protein was not absolutely required for viral replication in cell cultures, although its presence greatly improves virus growth. The ability to generate rIHNV from cDNA provides the basis to manipulate the genome in order to engineer new live viral vaccine strains.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3