Mutational Analysis of Conserved Domains within the Cytoplasmic Tail of gp41 from Human Immunodeficiency Virus Type 1: Effects on Glycoprotein Incorporation and Infectivity

Author:

Piller Sabine C.1,Dubay John W.1,Derdeyn Cynthia A.1,Hunter Eric1

Affiliation:

1. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

ABSTRACT The transmembrane (TM) glycoprotein gp41 of human immunodeficiency virus type 1 possesses an unusually long (∼150 amino acids) and highly conserved cytoplasmic region. Previous studies in which this cytoplasmic tail had been deleted partially or entirely have suggested that it is important for virus infectivity and incorporation of the gp120-gp41 glycoprotein complex into virions. To determine which regions of the conserved C-terminal domains are important for glycoprotein incorporation and infectivity, several small deletions and amino acid substitutions which modify highly conserved motifs were constructed in the infectious proviral background of NL4.3. The effects of these mutations on infectivity and glycoprotein incorporation into virions produced from transfected 293-T cells and infected H9 and CEM×174 cells were determined. With the exception of a mutation deleting amino acids QGL, all of the constructs resulted in decreased infectivity of the progeny virus both in a single-round infectivity assay and in a multiple-infection assay in H9 and CEM×174 cells. For most mutations, the decreased infectivity was correlated with a decreased incorporation of glycoprotein into virions. Substitution of the arginines (residues 839 and 846) with glutamates also reduced infectivity, but without a noticeable decrease in the amount of glycoprotein incorporated into virus produced from infected T cells. These results demonstrate that minor alterations in the conserved C-terminal region of the gp41 cytoplasmic tail can result in reductions in infectivity that correlate for most but not all constructs with a decrease in glycoprotein incorporation. Observed cell-dependent differences suggest the involvement of cellular factors in regulating glycoprotein incorporation and infectivity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3