Core Protein-Coding Sequence, but Not Core Protein, Modulates the Efficiency of Cap-Independent Translation Directed by the Internal Ribosome Entry Site of Hepatitis C Virus

Author:

Wang Ting-Hsien12,Rijnbrand René C. A.2,Lemon Stanley M.2

Affiliation:

1. Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290,1 and

2. Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-10192

Abstract

ABSTRACT Among a myriad of putative functions assigned to the hepatitis C virus (HCV) core protein, several studies suggest that it may modulate internal ribosome entry site (IRES)-mediated initiation of translation. We compared the translational activity of dicistronic reporter transcripts containing the HCV IRES within the intercistronic space fused to downstream sequence encoding either 22 amino acids (aa) or 173 aa of the core protein. The inclusion of the nearly full-length core protein-coding sequence significantly suppressed translation in vitro and in transfected HepG2 cells. However, this suppression was not eliminated by frameshift mutations introduced into the core sequence, suggesting that it occurred at the RNA level and not as a result of core protein expression in cis . Similarly, the expression of core protein (aa 1 to 191) in trans from a recombinant baculovirus did not suppress IRES-directed translation from any of these transcripts in transfected Huh-7 cells. While core protein expression did decrease IRES activity in HepG2 cells (up to 79% suppression), the expression of β-galactosidase from a control baculovirus also suppressed IRES activity (up to 56%), strongly suggesting that this suppression was nonspecific. Finally, the addition of purified recombinant core protein (aa 1 to 179) to in vitro translation reactions at concentrations up to a 10-fold molar excess over the RNA transcripts resulted in no significant reduction in IRES activity. Consistent with these results, a gel retention assay indicated no difference in the affinities of the recombinant HCV core protein and a recombinant Venezuelan equine encephalitis virus capsid protein for HCV IRES-containing RNA transcripts. We conclude that while the inclusion of core protein-coding sequence downstream of the IRES may reduce the efficiency of cap-independent translation on HCV RNA, the core protein itself has no biologically relevant activity in modulating HCV IRES activity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3