Energy Metabolism Response to Low-Temperature and Frozen Conditions in Psychrobacter cryohalolentis

Author:

Amato Pierre1,Christner Brent C.1

Affiliation:

1. Louisiana State University, Department of Biological Sciences, 282 Life Sciences Building, Baton Rouge, Louisiana 70803

Abstract

ABSTRACT Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and −80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (<−5°C). Respiratory uncoupling significantly decreased this temperature-dependent response, indicating that the proton motive force was required for energy adaptation to frozen conditions. Since ATP and ADP are key substrates in metabolic and energy conservation reactions, increasing their concentrations may provide a strategy for offsetting the kinetic temperature effect, thereby maintaining reaction rates at low temperature. The adenylate levels increased significantly <1 h after freezing and also when the cells were osmotically shocked to simulate the elevated solute concentrations encountered in the liquid fraction of the ice. Together, these data demonstrate that a substantial change in cellular energy metabolism is required for the cell to adapt to the low temperature and water activity conditions encountered during freezing. This physiological response may represent a critical biochemical compensation mechanism at low temperature, have relevance to cellular survival during freezing, and be important for the persistence of microorganisms in icy environments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3